Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements

نویسندگان

  • M. H. Zhang
  • W. Y. Lin
  • S. A. Klein
  • J. T. Bacmeister
  • S. Bony
  • R. T. Cederwall
  • A. D. Del Genio
  • J. J. Hack
  • N. G. Loeb
  • U. Lohmann
  • P. Minnis
  • I. Musat
  • R. Pincus
  • P. Stier
  • M. J. Suarez
  • M. J. Webb
  • J. B. Wu
  • S. C. Xie
  • M.-S. Yao
  • J. H. Zhang
چکیده

[1] To assess the current status of climate models in simulating clouds, basic cloud climatologies from ten atmospheric general circulation models are compared with satellite measurements from the International Satellite Cloud Climatology Project (ISCCP) and the Clouds and Earth’s Radiant Energy System (CERES) program. An ISCCP simulator is employed in all models to facilitate the comparison. Models simulated a four-fold difference in high-top clouds. There are also, however, large uncertainties in satellite high thin clouds to effectively constrain the models. The majority of models only simulated 30–40% of middle-top clouds in the ISCCP and CERES data sets. Half of the models underestimated low clouds, while none overestimated them at a statistically significant level. When stratified in the optical thickness ranges, the majority of the models simulated optically thick clouds more than twice the satellite observations. Most models, however, underestimated optically intermediate and thin clouds. Compensations of these clouds biases are used to explain the simulated longwave and shortwave cloud radiative forcing at the top of the atmosphere. Seasonal sensitivities of clouds are also analyzed to compare with observations. Models are shown to simulate seasonal variations better for high clouds than for low clouds. Latitudinal distribution of the seasonal variations correlate with satellite measurements at >0.9, 0.6–0.9, and 0.2–0.7 levels for high, middle, and low clouds, respectively. The seasonal sensitivities of cloud types are found to strongly depend on the basic cloud climatology in the models. Models that systematically underestimate middle clouds also underestimate seasonal variations, while those that overestimate optically thick clouds also overestimate their seasonal sensitivities. Possible causes of the systematic cloud biases in the models are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing Chlorophyll-a in the Southwestern Coastal Waters of the Caspian Sea

Caspian Sea with an average depth of 27m is the largest enclosed water body in the world. Despite its enormity and valuable biotic and economic resources, investigations on the biota and seawater properties are mosaic at best. In previous studies, the monitoring of the chlorophyll-a concentrations in the Southern Caspian Sea was organized based on satellite data sets however, vertical dis...

متن کامل

Southeast Atlantic Ocean Aerosol Direct Radiative Effects Over Clouds: Comparison Of Observations And Simulations

Absorbing aerosols exert a warming or a cooling effect on the Earth's system, depending on the circumstances. The direct radiative effect (DRE) of absorbing aerosols is negative (cooling) at the top-of-the-atmosphere (TOA) over a dark surface like the ocean, as the aerosols increase the planetary albedo, but it is positive (warming) over bright backgrounds like clouds. Furthermore, radiation ab...

متن کامل

Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar

Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative feedback processes is still the weakest component of current general circulation models (e.g., Senior and Mitchell...

متن کامل

Evaluation of NASA GISS Post-CMIP5 Single Column Model Simulated Clouds and Precipitation Using ARM Southern Great Plains Observations

The planetary boundary layer turbulence and moist convection parameterizations have been modified recently in the NASA Goddard Institute for Space Studies (GISS) Model E2 atmospheric general circulation model (GCM; post-CMIP5, hereafter P5). In this study, single column model (SCM P5) simulated cloud fractions (CFs), cloud liquid water paths (LWPs) and precipitation were compared with Atmospher...

متن کامل

Towards constraints on fossil fuel emissions from total column carbon dioxide

We assess the large-scale, top-down constraints on regional fossil fuel emissions provided by observations of atmospheric total column CO2, XCO2 . Using an atmospheric general circulation model (GCM) with underlying fossil emissions, we determine the influence of regional fossil fuel emissions on global XCO2 fields. We quantify the regional contrasts between source and upwind regions and probe ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005